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A b s t r a c t  

The algebraic "prolongation structure" approach of Wahlquist and Estabrook is used to 
determine the various forms of inverse scattering equations known for the generalized 
Korteweg-de Vries equation. 

1. P s e u d o p o t e n t i a l s  f o r  t he  Genera l i zed  K o r t e w e g - d e  Vries E q u a t i o n  

Much current interest revolves about the exact solutions to non-linear 
evolution equations determined in the last few years by means o f  the inverse 
scattering method. Recently Wahlquist and Estabrook (1975)introduced a 
new method for the determination of  such inverse scattering problems that 
offers the possibility of  a more systematic approach than was previously 
available. In this paper we wish to illustrate the new procedure by applying 
it to the problem of  the generalized Korteweg-de Vries equation 

u t + 12UZUx +Uxx x = 0 (1.1) 

For details o f  the method which involves differential forms we refer to 
Wahlquist and Estabrook (1975) and Harrison and Estabrook (1971), 

If  we define the variables 

z = u x (1.2) 

P = Zx (1.3) 

then the equations (1.1)-(1.3) may be associated with the set of  2-forms 

~ t  = - d u  A d x  + ctp A d t  + 12u2z d x  A d t  (1.4) 

a 2 = du  A d t  = z d x  A d t  (1.5) 
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~3 = dz A dr - p d x  A d t  (I .6) 

Sectioning these forms (Tanaka, 1972) into a solution manifold of equations 
(1.1)-(1.3) annuls these forms, and consequently our system of first-order 
partial differential equations may be expressed by 

~l = O, ~2 = O, ~3 = 0 

where oq, c~2, o~ 3 are the sectioned forms. Complete equivalence between the 
partial differential set of equations and the set of forms oq, ~2, c~3 requires 
the set to be closed with respect to the operation of exterior differentiation; 
the 2-forms dc~ i must belong to the ring of forms generated by the ~i- This is 
true of the forms (1.4).(1.6). 

The method of Wahlquist and Estabrook proceeds by the determination 
of 1-forms 

w = dy  + F ( u , z , p )  dx  + G ( u , z , p )  d t  (1.7) 

having exterior derivatives within the ring of forms ~1, c~2, ~3, w 
3 

d w  = ~ 17io~i+TrAw (1.8) 
i=1 

Generally there will be a set of such forms w k ( k  = 1 , . . . ,  n) 

wk  = dY k + Fk  (u, z ,  p )  d x  + GtC (u,  z ,  p)  d t  (1.9) 

having the property 
3 n 

dw r = ~ 1)riOLi + ~ I t? A w k (1.10) 
i=1 k = l  

Condition (1.10) yields the equation 

zGu k + pGz k - 12u2zGk p + GiF~i  - F iG  k yi= 0 (1.11) 

The last two terms of (1.11) can be expressed as the Lie derivative 

V = [G, F] 
G 

where we introduce the notation 

[G, F ]X = GiF~i - FiGkyi (1.12) 

This bracket operation has the normal properties of a Lie bracket. Equation 
(1.11) can then be more concisely expressed as 

zG u + pG z - 12u2zGp + [G, F] = 0 (1.13) 

From (1.13) we can determine the form o f F  k and G k to be 

F k = 2 x l  k + 2ux2 k + 3uZx3 k (1.14) 

G t¢ = - -2x2k(p  + 4u 3) + 3x3k( z  2 -- 2up -- 6U 4) 
(1.1s) 

+ 8X4 k +8XskU + 4 x 6 k u  2 + 4xvlCz 
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The equation (1.13) then gives rise to Lie bracket relations between the 
various x i. These are 

[X1,X3] =0 ,  [XZ,X3] =0 ,  [X3, XT] = 0  

[Xl, X2] =--XT, [XI, X4] = 0, [X3,X61 : 0, 

together with the relations 
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[X2, X6] = - 2 x  7 

(1.16) 

[ x l , x s ]  + [x2, x 4 1 : 0  

[Xl, x61 + Ix3, x41 : 0 

We note that some brackets relations such as [x4, xT] do not appear and 
others such as [xl, xs] and [x2, x4] are merely constrained to add to zero. 
In order to find a representation of this algebraic structure we adopt the 
procedure of  trying to complete it into a Lie algebra by using the consistency 
requirements of Jacobi identities. In order to do this it may be necessary in 
general to introduce additional generators, but in this case we can determine 
the following Lie algebra (I .I7), which contains the original algebraic 
structure (1.16): 

[X1, X2] = --XT, 

[x~, x41 : -XxT, 

[x4, xs] = -X~x7, 

[X5, X61 = 2Xx7, 

[X1,X5] =•XT, 

[Xz, X61 ..... 2x7, 

[x4, xT] : -Xxs,  

[X6, X7] = --2X 5 

[X1, X7] = X s 

[X2, X71 = X6 

[XS, XT] = --)kX6 

with all other Lie brackets being zero and X an arbitrary constant. 

(1.17) 

2. R e a l i z a t i o n s  o f  t h e  A l g e b r a  

We can simplify the problem by noting that the Lie bracket relations 
between xl, x2, x3, x4 are satisfied if we make the identifications 

1 X 
X 3 = O, X 1 = - - 1 X 6 ,  X 2 *= - - - ~ X S ,  X4 = 2 X6 (2.1) 

This means that we need only consider a subalgebra generated by x s , x 6 , and 
x 7. The relevant relations are 

[Xs, x6] = 2Xx7 

[Xs, xT] = -XX 6 (2.2) 

[X 6,X'7] =--2X s 

Two particular representations are of particular relevance. 



230 MORRIS 

2.1. A Two-Dimensional Linear Representation and the Tanaka (1972) 
Form o f  the Inverse Scattering Problem. A linear representation of the 
commutation relations (2.2) is given by 

X 
~5 = x ~ / ~ ( Y l b 2 - y 2 b x )  

x 6 = ~ (Vlb I - Y2bz) (2.3) 

x/~. b X T = ~ L V l  2 + y 2 b l )  

where b i = b/Oy i. The corresponding Pfaffian forms are 

w 1 = d y ,  - [ V ~ Y l  +x/~uy2] dx 

+ [4(u 2 + ~k) "V/-2yl + ~ (p + 4U 3 + 4XU -- 2V/-~)y2] at  

W 2 = dy 2 + (X/~ uy I + N/~ Y2) dx (2.4) 

+ [--~v/-2(p+4u3,+2N/~z)Yl - ' 4 (  u2 + ~')~Y2] dt  (2.5) 

On a solution manifold of the prolonged ideal we will have ~1 = 0 = ~2 and 
this gives rise to the equations 

Ylx  = x/r~yl +N/2Uy2 (2.6) 

Y l t  = - - 4 (  u2 + X)V/~Yl - V ~ ( P  +4u3 +4Xu -2X/ -~z)y2  (2.7) 

Y 2x . . . .  X/-~ Y 2 - V c~ uy l (2.8) 

Y2t =X/2 (P +4ua +4Xu + 2X/~z)Yl +4(u 2 + X)X/-~Y2 (2.9) 

The equations (2.6) and (2.8) can be recast in the matrix form 

0 0 Yl Yl 

which is the form of the inverse scattering problem determined by Tanaka 
(t972), and Ablowitz et al. (1973). 

2.2. A Non-linear Representation and the Miura (1968) Transformation. 
A non-linear realization of the algebra (2.2) is given by 

x s = i~tx/~lbl  

X 6 = 0 t l  2 -- ~,)bl (2.11) 

x7 = 7,~ (v12 + ?,)b, 
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with the corresponding Pfaffian 

w 1 = dy t - [@12 -- ~k) + 2x/~iyu]dx + 2x/~i~o + 4u 3 + 4Xu)y 1 

- i%/-2(u 2 + 7k) (yl 2 - ).) +z(y l  2 + X)ldt (2.12) 

On the solution manifold of  the prolonged ideal we have ~ = O, which yields 
the equations 

Ylx = @12 - ~k) + i2~/+-2yl u = @12 - ~.) + 2x/2iyu (2.13) 

Yl t  = -i2x/-2[(p + 4u 3 + 4).u)y 1 - ix/2(u 2 + X)Oq 2 - X) +z(y l  2 + X)] (2.i4) 

If  we definey 1 by 

Yl = (yl +v~iu) (2.18) 

then Y1 satisfies the equation ( iq y , x = y 1 2 + 2  2 + ~  - X  (2.16) 

This is a Ricatti equation, which can be linearized by the substitution 

r l  = G / ~  

This procedure yields the standard Schr6dinger equation form 

~xx + (2U + X)~ = 0 (2.17) 

where U =  [u 2 + (i /xQ) Ux]. 
We can identify this equation as the inverse scattering equation for the 

ordinary Korteweg-de Vries equation 

U t + Uxx x + 12 UUx = 0 (2.18) 

for it is a well-known result due to Miura that 

U = [u 2 + ( i /V~) Ux] (2.19) 

is a solution of  the Korteweg-de Vries equation whenever u is a solution of  
the modified Korteweg-de Vries equation. 
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